
15-618 Final Report

Concurrent Binary Search Trees

Yifan Cao (Andrew ID: yifanca2), Yahui Liang (Andrew ID: yahuil)

December 2021

1 Project Web Page URL

https://yahuiliang.github.io/15618-yahuiyifan-team/

2 Summary

We implemented 3 concurrent versions of binary search tree (BST) data structure, including single coarse-grained
lock protected BST, fine-grained lock protected BST, and lockfree BST. We compared the performance of different
concurrent BSTs when running different operation pattern with different tree size and thread numbers.

3 Background

A binary search tree (BST) is a data structure which allows data to be searched, inserted, and deleted with a time
complexity O(log(n)). In a BST, the most important property is that a parent node will always have key larger
than the key of its left sub-tree and smaller than the key of its right sub-tree. Three operations are supported in
BST, insertion, deletion, and searching. When inserting, the location where the new node will be inserted need
to guarantee that the property of BST still holds. After deletion, the BST may need to be adjusted to make
sure the property still holds. Binary search trees have lots of applications. Sorting can be performed using a
binary search tree by inserting all elements and then perform in-order traversal. Another important application
is database, which can use B-tree to sort data. Although not exactly using BST, B-tree is just a generalization
of BST allowing each parent node having more than two child nodes. As long as BST supports concurrency, the
applications of BST can explore parallelism and speed up.

Figure 1: An example of a binary search tree.

1



In this project, we focused on find, insert, and erase three operations of the tree. We mainly want to parallelize
the operations on a binary search tree, making it possible for multiple threads to operate on one tree concurrently
without corrupting the tree. Dependencies occur when the program tries to read and modify same node con-
nections. Therefore, we would have some synchronizations when one edge gets manipulated by multiple threads.
Also, in concurrent BST, memory management can be a complex problem. Nodes cannot be freed immediately
when they are removed from the tree since other threads may be accessing the same nodes. Therefore, we came
up an idea on using Read/Write lock to implement the garbage collection mechanism.

4 Approach

C++ is used to implement solutions. STL mutex and atomic variables are used to ensure code is executed correctly
in critical sections. Trees are implemented as template classes, and they are able to support all customized
structures. But for the simplification, some of our operations only focused on integers and trees are not guaranteed
can be used on types besides integers. We define the correctness of concurrent BST as insertion/deletion should
not affect the traversal of other nodes in the tree.

4.1 Coarse Grained BST

This is the most basic BST. Find, insert, and erase are synchronized by using the single mutex. No two operations
can be executed at the same time.

4.2 Fine Grained BST

The algorithm is implemented based on [1] in the reference section.

4.2.1 Find

The traversal is similar with the general BST. However, once the target is found, the algorithm checks whether
the target is still the child of the parent node before it gets returned to avoid returning the node which has been
slipped away. If this condition is met, the traversal will start from the parent of the child to find for the target
again. Once the target is found, the parent node is locked to avoid other processes change the connection between
the parent and the target node. If the target is not found, it returns the parent and the direction where the target
should be appended to. Two routines are implemented for this step. One is a helper function which acts as the
dependency for insert and erase functions. Another is the public find function for checking whether the target
exists in the tree, and this functions will call the helper function to retrieve the result, and it will be responsible
for releasing the lock of the node to allow other operations to make modifications to it.

4.2.2 Insert

Insert relies on find. The routine calls find to retrieve the parent node and the direction where the new node
should be inserted to. At this point, the parent is locked and wait for modifications. Then the algorithm simply
connect the new node to the parent and release the lock.

2



Figure 2: Fine Grained BST Insert example

4.2.3 Rotation

The rotation operation is needed to perform the deletion. While the rotation is performed, the original structure
is not modified. Instead, the algorithm makes copies of rotated nodes and inject these nodes after the rotation
into the tree so that other operations can still traverse in the right order before the rotation operation is done.
While the rotation is being performed, edges which need to be changed are synchronized by using locks.

Figure 3: Fine Grained BST Rotation example

4.2.4 Erase

Erase relies on the find and rotation operations. The algorithm first use find to locate the node. Then it tries
to rotate the node which needs to be removed until the node have only one incoming edge and one outgoing
edge. Then the node’s parent will be reconnected with node’s child to make the node disappear from the tree.
Modifications to the parent node will be synchronized using the lock. Since it could be possible that other
operations are trying to access the erased node, we could not free this node immediately. Instead, we would mark
the node as freed, and have a back pointer to point to the original parent of the node and make other operations

3



to resume from that point. And the node which needs to be freed will be pushed to the retire list which is local
to each thread.

Figure 4: Fine Grained BST Erase example

4.3 Lock Free BST

The algorithm is implemented based on [2] in the reference section. Lock free tree gets rid of locks. Instead, it
uses C++ atomic class to ensure edge modifications are atomic. One property of this tree is that all data are
stored on leaves. Two bits are taken from node address to indicate whether the edge between parent and child is
being erased.

4.3.1 Seek

The algorithm traverses the tree until it encounters a leaf which holds the same value as the key. If the key does
not exist, the seek function returns the leaf whose key is most likely to match with the given key.

4.3.2 Find

The function simply check whether seek function returns a node whose key is same as the given key.

4.3.3 Insert

Insert operation first calls seek to find the location where the node should be inserted to. If the key has existed,
nothing will be done. If the key does not exist, two new nodes will be created in this step. One node is the
internal node, another node will be the leaf which stores newly added key. The reason to have the internal node
is to make the actual data store on the leaf. The key of the internal node will be the maximum among the old
leaf key and the new key. Then the old leaf and the new leaf will be inserted to left and right of the internal node
based on their key values.

4



Figure 5: Lock Free BST Insert example

4.3.4 Erase

As oppose to insert operation, the erase operation removes two nodes for each call. One node is the internal node,
and another node is the leaf node which stores the key. In this case, we call the leaf node which needs to be
removed as child, and the other child of the internal node will be called as sibling. ”Flag” bit is used for marking
the edge between internal node and the child is being modified. ”Tag” bit is used for marking the edge between
internal node and the sibling is being modified. Erase operation simply reconnect the parent of the internal node
to the sibling. Therefore, the internal node and the leaf is isolated from the tree.

Figure 6: Lock Free BST Erase example

4.4 Garbage Collection

Nodes which are being accessed by other operations cannot be freed immediately. Instead, we have a local retire
list for each thread. When one node needs to be freed, it gets pushed onto this list. When the size of the list
exceeds a threshold value, the garbage collection routing will wait until current read and write operations complete
and block all later operations get executed. Once the previous reads/writes finish, GC starts executing. It would
try to free all nodes in the local retire list. Once GC completes its work, it gives away the permission and let
later operations keep executing their works. By having an global lock and a read/write counter, this mechanism
can be implemented easily.

5



5 Results

5.1 Experiment Setup

We conducted experiments on Pittsburgh Supercomputing Cluster (PSC) under shared memory mode. The
technical specifications are listed below:

• CPU: 2x AMD EPYC 7742 (2.25-3.40 GHz, 2x64 cores per node)

• RAM: 256 GB

• Cache: 256 MB L3 cache, 8 memory channels

• Local Storage: 3.84 TB NVMe SSD

To compare the performance of each BST implementation, we measured the time each BST implementation needed
to finish the program under the same experiment setting. To compare the performance of different versions of
BST under difference circumstances, we conducted experiments with the following three parameters:

• Number of threads. We conducted experiments using 1, 2, 4, 8, 16, 64, 128, and 256 threads. The number
of threads used is related to the degree of parallelism and also the degree of contention [2].

• Operation patterns. We carried out experiments using 7 different operation patterns, as listed below:

1. Pure insert. Only insert operations are performed and timed.

2. Pure erase. After inserting some data, then only erase operations are performed and timed.

3. Pure search. After inserting some data, then only search operations are performed and timed.

4. Contention simulated. Multiple threads will try to perform insert, erase, and search operations on
same nodes concurrently. All operations are timed.

5. Write dominance. 50% operations are insert operations and 50% operations are erase operations. Both
operations are modifying the tree.

6. Mixed. 20% operations are insert operations, 20% operations are erase operations, and the other 60%
operations are search operation. The pattern is a most likely pattern in daily use of BST.

7. Read dominance. 10% operations are insert operations and 90% operations are search. This pattern
mainly reads the tree instead of modifying the tree.

The last three patterns are developed from the idea in [2].

• Problem size. The problem size can be an important factor in parallelizing problem. In our experiment, we
use 25,000, 50,000, 75,000, and 1,000,000 tree nodes to explore the impact of problem size.

5.2 Experiment Results

We timed each experiment, and plot bar plots of time to compare the performance of each implementation of
binary search tree. We selected results of using 1 thread, 64 threads and 256 threads to be presented here. Results
using other thread numbers are similar to result of 64 threads and 256 threads.

6



Figure 7: Time used by different
BST implementations when using 1
thread and pure insert pattern

Figure 8: Time used by different
BST implementations when using 64
threads and pure insert pattern

Figure 9: Time used by different
BST implementations when using
256 threads and pure insert pattern

Figure 10: Time used by different
BST implementations when using 1
thread and pure erase pattern

Figure 11: Time used by different
BST implementations when using 64
threads and pure erase pattern

Figure 12: Time used by different
BST implementations when using
256 threads and pure erase pattern

Figure 13: Time used by different
BST implementations when using 1
thread and pure search pattern

Figure 14: Time used by different
BST implementations when using 64
threads and pure search pattern

Figure 15: Time used by different
BST implementations when using
256 threads and pure search pattern

7



Figure 16: Time used by different
BST implementations when using 1
thread and write dominance pattern

Figure 17: Time used by different
BST implementations when using 64
threads and write dominance pat-
tern

Figure 18: Time used by differ-
ent BST implementations when us-
ing 256 threads and write dominance
pattern

Figure 19: Time used by different
BST implementations when using 1
thread and mixed pattern

Figure 20: Time used by different
BST implementations when using 64
threads and mixed pattern

Figure 21: Time used by different
BST implementations when using
256 threads and mixed pattern

Figure 22: Time used by different
BST implementations when using 1
thread and read dominance pattern

Figure 23: Time used by different
BST implementations when using 64
threads and read dominance pattern

Figure 24: Time used by differ-
ent BST implementations when us-
ing 256 threads and read dominance
pattern

8



Figure 25: Time used by different BST implemen-
tations when using 64 threads and contention sim-
ulated pattern

Figure 26: Time used by different BST implemen-
tations when using 256 threads and contention sim-
ulated pattern

5.3 Conclusion and Analysis

After carrying out the experiments, we draw several conclusions and analyze the reason.

5.3.1 Single thread performance

The performance comparison plot when using single thread is shown in the first column of plots in Section 5.2.
From the plots, we can see that when there is only 1 thread, the coarse-grained lock protected BST is the fastest,
and then lockfree BST is faster than fine-grained lock protected BST in most operation patterns except for the
pure erase pattern.

The reason why coarse-grained lock protected BST is the fastest is that when there is only one thread, every
operation is serialized naturally. In this case, coarse-grained lock has smallest overhead since it only locks at the
beginning of each operation and release the lock after each operation. Fine-grained lock protected BST involves
more locking and unlocking operations since it will lock the nodes that are being modified, and there will be
more than one pair of locking and unlocking per operation. Therefore, it has the largest overhead. The exception
is that lockfree BST is a little bit slower than fine-grained lock protected BST in the pure erase pattern. The
possible reason is that the implementation of lockfree BST also involves a lot of flagging and tagging edges and
compare-and-swapping, so the overhead can also be very large.

5.3.2 Multi-thread performance

When the number of threads is larger than 1, the general trend is that lockfree BST is faster than fine-grained
lock protected BST, and fine-grained lock protected BST is faster than coarse-grained lock protected BST, which
meets our expectation.

It is clear that coarse-grained lock protected BST is the slowest because it does not allow two operations to
access the tree concurrently, so when using coarse-grained lock protected BST, basically all the operations are
serialized. Therefore, it will be very slow and actually does not benefit a lot from parallelism. In fine-grained lock
protected BST, every node has its own lock, and only nodes that are currently being modified will be locked, so it
is truly benefiting from parallelism. However, fine-grained locks bring quite large overhead due to frequent locking
and unlocking. Lockfree implementation is avoiding the large overhead by using compare-and-swap instructions
before modifying an edge in the tree but not locking all nodes accessed, so the overhead will be smaller while still
benefiting from parallelism, and thus lockfree implementation is the fastest.

The difference between coarse-grained lock protected BST and other two types of BST is very large when
performing pure search, mixed, and read dominance pattern operations. The reason is that in these three patterns,

9



reading the tree is the dominating operation but not modifying the tree, so fine-grained lock protected BST and
lockfree BST is experiencing relatively small overhead, and there will be much less time spent on garbage cleaning.
When erase operations are rare, the retire list will be filled up more slowly, and garbage collection happens less
frequently. When garbage collecting, the operations on tree will be temporarily blocked, and longer the total
execution time. Therefore, less garbage collection means even faster execution. Therefore, in these three operation
patterns, fine-grained lock protected BST and lockfree BST will be overwhelmingly faster.

As opposed to pure search, mixed, and read dominance pattern operations, other patterns involve more
writing operations, including inserting and erasing. As explained above, in these situations, there will be more
lock overhead and/or more garbage collection. Although fine-grained lock protected BST and lockfree BST are
still much faster than coarse-grained lock protected BST, the time difference is smaller.

5.3.3 Contention

The time plots for the contention simulated pattern when using 64 threads and 256 threads are shown in Fig.
25 and Fig. 26. From the figures, we can see that lockfree BST is still the fastest, followed by fine-grained lock
protected BST, and coarse-grained lock protected BST. However, comparing with experiment result in Fig. 20
and Fig. 21, we can see that the time difference is obviously smaller. The operation pattern of the mixed pattern
and contention simulated pattern are very similar. The difference is that in contention simulated pattern, we
intentionally let multiple threads accessing or modifying same set of tree nodes, but in mixed pattern, each thread
will access or modify different tree nodes. Although in the setting of binary tree, contention can still occur even
when threads are accessing different set of nodes as they may share common parents, but the chance will be much
smaller. We can see that contention does impact the performance. Coarse-grained lock BST is impacted the least
as it is suffering from contention all the time. The other two types are impacted more as their performance are
closer to the performance of coarse-grained lock BST, but they are still faster.

6 References

[1] Kung, H. T., & Lehman, P. L. (1979). Concurrent manipulation of binary search trees . Carnegie-Mellon
University, Dept. of Computer Science.

[2] Natarajan, A., & Mittal, N. (2014). Fast concurrent lock-free binary search trees. SIGPLAN Notices, 49(8),
317–328. https://doi.org/10.1145/2692916.2555256

7 Work Distribution

Yahui Liang: 50%

• Coarse-grained lock protected BST implementation

• Fine-grained lock protected BST insert operation implementation

• Lockfree BST erase operation implementation

• Garbage collection implementation

• Pattern generator (Write-only, Read-only, Contention)

• Testing and experiments

• Report

Yifan Cao: 50%

• Fine-grained lock protected BST erase operation implementation

• Lockfree BST insert operation implementation

10



• Pattern generator (Write-dominance, Read-dominance, Mixed)

• Automatic simulating script

• Testing and experiments

• Result plotting and analysis

• Report

11


